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Abstract The notions of Ci (x)-FC-diagonally quasiconvex, Ci (x)-FC-quasiconvex and
Ci (x)-FC-quasiconvex-like for set-valued mappings are introduced in FC-spaces without
convexity structure. By applying these notions and a maximal element theorem for a family
of set-valued mappings on product FC-space due to author, some new existence theorems of
solutions for four new classes of systems of generalized vector quasi-equilibrium problems
are proved in noncompact FC-spaces. These results improve and generalize some recent
known results in literature to noncompact FC-spaces.

Keywords Maximal element · System of generalized vector quasi-equilibrium
problems · FC-hull · Ci (x)-FC-diagonally quasiconvex · Ci (x)-FC-quasiconvex ·
Ci (x)-FC-quasiconvex-like · FC-spaces

1 Introduction

Let X and Y be two nonempty sets. We denote by 2Y and < X > the family of all subsets
of Y and the family of all nonempty finite subsets of X , respectively. Let I be any index
set. For each i ∈ I , let Xi and Yi be topological spaces and Zi be a nonempty set. Let
X = ∏

i∈I Xi , Y = ∏
i∈I Yi and for i ∈ I and x ∈ X, xi = πi (x) be the projection of x

onto Xi . For each i ∈ I , let Ai : X × Y → 2Xi , Ti : X × Y → 2Yi ,Ci : X → 2Zi , and
ψi : X × Y × Xi → 2Zi be set-valued mappings.

In this paper, we consider the following systems of generalized vector quasi-equilibrium
problems:
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(I) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) �⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ).

SGVQEP(I)

(II) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) ⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ).

SGVQEP(II)

(III) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi )
⋂

Ci (x̂) = ∅, ∀ zi ∈ Ai (x̂, ŷ).

SGVQEP(III)

(IV) Find (x̂, ŷ) ∈ X × Y such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi )
⋂

Ci (x̂) �= ∅, ∀ zi ∈ Ai (x̂, ŷ).

SGVQEP(IV)

The SGVQEP (I)–SGVQEP (IV) were introduced and studied by Ding [1] in locally
FC-uniform spaces. The SGVQEP (I)–SGVQEP (IV) with Ai (x, y) = Ai (x) and Ti (x, y) =
Ti (x) for all i ∈ I and (x, y) ∈ X × Y were introduced and studied by Lin and Liu [2],
Lin et al. [3], Lin [4], Peng et al. [5], Ding [6,7] and Ding and Yao [8] in the cone setting
of (locally convex) topological vector spaces, FC-spaces, locally FC-uniform spaces and
G-convex spaces, respectively. The SGVQEP (I)–SGVQEP (IV) with Yi = Xi , Ai (x, y) =
Ai (x), Ti (x, y) = Ti (x) and ψi : X × Yi × Xi → 2Zi for each i ∈ I and (x, y) ∈ X × Y
were introduced and studied by Lin [9], Ding et al. [10], and Ding [11] in topological vector
spaces, locally G-convex uniform spaces and locally FC-spaces, respectively. Some exis-
tence theorems of solutions for SGVQEP (I)–SGVQEP (IV) were established under different
assumptions.

For appropriate choices of the index set I , the spaces Xi , Yi , Zi and the mappings
Ai , Ti ,Ci and ψi , it is easy to see that the SGVQEP (I)–SGVQEP (VI) include most exten-
sions and generalizations of the systems of generalized (vector) quasi-equilibrium problems,
the systems of generalized (vector) quasi-variational inequality problems, the systems of gen-
eralized (vector) equilibrium problems and the systems of generalized (vector) variational
inequality problems as very special cases, for example, see [1–11] and the references therein.

In this paper, we introduce the new notions of Ci (x)-FC-diagonally quasiconvex, Ci (x)-
FC-quasiconvex and Ci (x)-FC-quasiconvex-like for set-valued mappings in FC-space. By
using these notions and an existence theorem of maximal elements for a family of set-valued
mappings due to author [12], some new existence theorems of solutions for the SGVQEP
(I)–SGVQEP (IV) are proved in noncompact FC-spaces without convexity structure. These
results improve and generalize some recent known results in literature to noncompact
FC-spaces.

2 Preliminaries

Let�n be the standard n-dimensional simplex with vertices e0, e1, · · · , en . If J is a nonempty
subset of {0, 1, · · · , n}, we denote by �J the convex hull of the vertices {e j : j ∈ J }.

The following notion was introduced by Ben-El-Mechaiekh et al. [13].
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Definition 2.1 (X, �) is said to be a L-convex space if X is a topological space and � :
< X >→ 2X is a mapping such that for each N ∈ < X > with |N | = n + 1, there exists
a continuous mapping ϕN : �n → �(N ) satisfying A ∈ < N > with |A| = J + 1 implies
ϕN (�J ) ⊂ �(A), where �J is the face of �N corresponding to A.

The following notion of a finitely continuous topological space (in short, FC-space) was
introduced by Ding [14].

Definition 2.2 (X, ϕN ) is said to be a FC-space if X is a topological space and for each
N = {x0, · · · , xn} ∈ < X > where some elements in N may be same, there exists a contin-
uous mapping ϕN : �n → X . A subset D of (X, ϕN ) is said to be a FC-subspace of X if
for each N = {x0, · · · , xn} ∈< X > and for each (xi0 , · · · , xik } ⊂ N

⋂
D, ϕN (�k) ⊂ D

where �k = co({ei j : j = 0, · · · , k}).
It is clear that each L-convex space must be a FC-space. The following example shows that
there exists a FC-space which is not a L-convex space.

Example 2.1 Let X = (1, 2)
⋃
(3,+∞) with usual topology. Define a mapping ϕN :

< X >: �n → 2X as follows: for each N = {x0, · · · , xn} ∈ < X >,

ϕN (α) =
{∑n

i=0 αi xi , if N ⊂ (1, 2),
3

∑n
i=0 αi xi , if N �⊂ (1, 2), ∀ α = (α0, · · · , αn) ∈ �n .

It is easy to see that ϕN is continuous and hence (X, ϕN ) is a FC-space. For any a ∈ (1, 2)
and b ∈ (3,∞), (a, 2)

⋃
(3,∞) and (b,∞) are both FC-subspace of X . But X is not convex.

If we define a set-valued mapping � :< X >→ 2X by

�(N ) = ϕN (�n), ∀ N = {x0, · · · , xn} ∈< X >,

then we have that for each N = {x0, · · · , xn} ∈< X >,ϕN (�N ) ⊂ �(N ). But if N =
N1

⋃
N2 where N1 ⊂ (1, 2) with |N1| = J + 1, J < n and N2 ⊂ (3,+∞), then we have

�(N1) = ϕN1(�J ) ⊂ (1, 2) and ϕN (�J ) ⊂ (3,+∞), i.e., ϕN (�J ) �⊂ �(N1). Hence (X, �)
is not a L-convex space.

It is clear that any convex subset of a topological vector space, any H -space introduced by
Horvath [15], any G-convex space introduced by Park and Kim [16] and any L-convex spaces
introduced by Ben-El-Mechaiekh et al. [13] are all FC-space. Hence, it is quite reasonable
and valuable to study various nonlinear problems in FC-spaces.

By the definition of FC-subspaces of a FC-space, it is easy to see that if {Bi }i∈I is a
family of FC-subspaces of a FC-space (Y, ϕN ) and

⋂
i∈I Bi �= ∅, then

⋂
i∈I Bi is also a

FC-subspace of (Y, ϕN ) where I is any index set. For a subset A of (Y, ϕN ), we can define
the FC-hull of A as follows:

FC(A) =
⋂

{B ⊂ Y : A ⊂ B and B is FC − subspace of Y }.
Clearly, FC(A) is the smallest FC-subspace of Y containing A and each FC-subspace of a
FC-space is also a FC-space

Lemma 2.1 [12] Let (Y, ϕN ) be a FC-space and A be a nonempty subset of Y . Then

FC(A) =
⋃

{FC(N ) : N ∈< A >}.
Remark 2.1 Lemma 2.1 generalizes Lemma 1 of Tarafdar [17] and Lemma 2.1 of Tan and
Zhang [18] from H -space and G-convex space to FC-space without any convexity structure.
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Lemma 2.2 [12] Let X be a topological space, (Y, ϕN ) be a FC-space and G : X → 2Y be
such that G−1(y) = {x ∈ X : y ∈ G(x)} is compactly open in X for each y ∈ Y . Then the
mapping FC(G) : X → 2Y defined by FC(G)(x) = FC(G(x)) for each x ∈ X satisfies
that (FC(G))−1(y) is also compactly open in X for each y ∈ Y .

Remark 2.2 Lemma 2.2 generalizes Lemma 3.1 of Ding [19] and Lemma 2.2 of Tan and
Zhang [18] from H -space and G-convex spaces to FC-space without convexity structure.

Lemma 2.3 [14] Let I be any index set. For each i ∈ I , let (Yi , ϕNi ) be a FC-space. Let
Y = ∏

i∈I Yi and ϕN = ∏
i∈I ϕNi . Then (Y, ϕN ) is also a FC-space.

The following result is a special case of Corollary 3.3 of Ding [12].

Lemma 2.4 Let I be any index set. For each i ∈ I , let (Xi , ϕNi ) be a FC-space, X =∏
i∈I Xi and K be a compact subset of X. For each i ∈ I , let Gi : X → 2Xi be such that

(i) for each i ∈ I and x ∈ X, Gi (x) is a FC-subspace of Xi ,
(ii) for each x ∈ X, πi (x) /∈ Gi (x) for all i ∈ I ,

(iii) for each yi ∈ Xi , G−1
i (yi ) is compactly open in X

(iv) for each Ni ∈< Xi >, there exists a nonempty compact FC-subspace L Ni of Xi

containing Ni and for each x ∈ X \ K , there exists i ∈ I satisfying L Ni

⋂
Gi (x) �= ∅.

Then there exists x̂ ∈ K such that Gi (x̂) = ∅, for each i ∈ I .

3 Existence of solutions for the SGVQEP

Throughout this section, unless otherwise specified, we shall fix the following notations and
assumptions. Let I be any index set. For each i ∈ I , let (Xi , ϕNi ) and (Yi , ϕ

′
Ni
) be FC-

spaces, and Zi be a nonempty set. Let X = ∏
i∈I Xi and Y = ∏

i∈I Yi . For each i ∈ I , let
Ai : X × Y → 2Xi , Ti : X × Y → 2Yi ,Ci : X → 2Zi and ψi : X × Y × Xi → 2Zi be
set-valued mappings.

Definition 3.1 For each i ∈ I and y ∈ Y, ψi is said to be

(i) Ci (x)-FC-diagonally quasiconvex of type (I) in third argument if each
Ni = {zi,0, · · · , zi,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni ), there exists
j ∈ {0, · · · , n} such that ψi (x, y, zi, j ) �⊂ Ci (x),

(ii) Ci (x)-FC-diagonally quasiconvex of type (II) in third argument if for each Ni =
{zi,0, · · · , zi,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni ), there exists
j ∈ {0, · · · , n} such that ψi (x, y, zi, j ) ⊂ Ci (x),

(iii) Ci (x)-FC-diagonally quasiconvex of type (III) in third argument if for each Ni =
{zi,0, · · · , zi,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni ), there exists
j ∈ {0, · · · , n} such that ψi (x, y, zi, j )

⋂
Ci (x) = ∅,

(iv) Ci (x)-FC-diagonally quasiconvex of type (IV) in third argument if for each Ni =
{zi,0, · · · , zi,n} ∈< Xi > and for each x ∈ X with xi ∈ FC(Ni ), there exists
j ∈ {0, · · · , n} such that ψi (x, y, zi, j )

⋂
Ci (x) �= ∅.

Remark 3.1 The notions in Definition 3.1 generalizes the corresponding notions of Peng
et al. [5] from convex subsets of topological vector spaces to FC-spaces.

Lemma 3.1 [20] Let X and Y be topological spaces and G : X → 2Y be a set-valued
mapping. Then G is lower semicontinuous in x ∈ X if and only if for any y ∈ G(x) and any
net {xα} ⊂ X satisfying xα → x, there exists a net {yα} such that yα ∈ G(xα) and yα → y.
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The following results are Proposition 4.5 and proposition 4.6 of Ding [21].

Lemma 3.2 Let X, Y and Z be topological spaces. Let F : X × Y → 2Z and C : X → 2Z

be set-valued mappings such that

(i) C has closed (resp., open) graph,
(ii) for each y ∈ Y, F(·, y) is lower semicontinuous on each compact subset of X.

Then the mapping F∗ : Y → 2X defined by F∗(y) = {x ∈ X : F(x, y) ⊂ C(x)} (resp.,
F∗(y) = {x ∈ X : F(x, y)

⋂
C(x) = ∅}) has compactly closed values.

Lemma 3.3 Let X, Y and Z be topological spaces. Let F : X × Y → 2Z and C : X → 2Z

be set-valued mappings such that

(i) C has open (resp., closed) graph in X × Z,
(ii) for each y ∈ Y, F(·, y) is upper semicontinuous on each compact subset of X with

nonempty compactly closed values.

Then the mapping F∗ : Y → 2X defined by F∗(y) = {x ∈ X : F(x, y) �⊂ C(x)} (resp.,
F∗(y) = {x ∈ X : F(x, y)

⋂
C(x) �= ∅}) has compactly closed values.

Remark 3.2 Lemma 3.3 generalizes Lemma 2.3 of Ding and Park [22].

Theorem 3.1 Suppose that K and H are nonempty compact subsets of X and Y , respectively,
such that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) and the set {(x, y) ∈ X × Y :
ψi (x, y, ui ) ⊂ Ci (x)} are all compactly open in X × Y ,

(iii) for each y ∈ Y, ψi is Ci (x)-FC-diagonally quasiconvex of type (I) in third argument,
(iv) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in

X × Y ,
(v) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for

each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,
(vi) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)

⋂
L Ni and

ȳi ∈ Ti (x, y)
⋂

L Mi such that ψi (x, y, z̄i ) ⊂ Ci (x).

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) �⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ)

i.e., (x̂, ŷ) is a solution of the SGVQEP(I).

Proof For each i ∈ I , define a set-valued mapping Pi : X × Y → 2Xi by

Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi ) ⊂ Ci (x)}, ∀ (x, y) ∈ X × Y.

We show that for each i ∈ I and (x, y) ∈ X × Y ,

xi = πi (x) /∈ FC(Pi (x, y)) (3.1)

If it is false, then there exist i ∈ I and (x̄, ȳ) ∈ X × Y such that x̄i = πi (x̄) ∈
FC(Pi (x̄, ȳ)). By Lemma 2.1, there exists Ni = {zi,0, · · · , zi,n} ∈< Pi (x̄, ȳ) > such
that x̄i = πi (x̄) ∈ FC(Ni ). Hence we have

ψi (x̄, ȳ, zi, j ) ⊂ Ci (x̄), ∀ j = 0, · · · , n.
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But, by (iii) and Definition 3.1, there exists j ∈ {0, · · · , n} such that ψi (x̄, ȳ, zi, j ) �⊂ Ci (x̄)
which is a contradiction. Hence (3.1) is true. By the condition (ii), for each i ∈ I and zi ∈ Xi ,

P−1
i (zi ) = {(x, y) ∈ X × Y : ψi (x, y, zi ) ⊂ Ci (x)}

is compactly open in X×Y . It follows from Lemma 2.2 that (FC(Pi ))
−1(zi ) is also compactly

open in X × Y for each zi ∈ Xi . By Lemma 2.3, for each i ∈ I, Xi × Yi is a FC-space and
X ×Y is also a FC-space. For each i ∈ I , define a set-valued mapping Gi : X ×Y → 2Xi ×Yi

by

Gi (x, y) =
{ [Ai (x, y)

⋂
FC(Pi (x, y))] × Ti (x, y), if (x, y) ∈ Wi ,

Ai (x, y)× Ti (x, y), if (x, y) /∈ Wi ,

By the condition (i), for each i ∈ I and (x, y) ∈ X ×Y,Gi (x, y) is a FC-subspace of Xi ×Yi .
By the definition of Wi and (3.1), for each i ∈ I and (x, y) ∈ X × Y, (xi , yi ) /∈ Gi (x, y).
For each i ∈ I and (ui , vi ) ∈ Xi × Yi , we have

G−1
i (ui , vi ) = [A−1

i (ui )
⋂
(FC(Pi ))

−1(ui )
⋂

T −1
i (vi )]

⋃
[(X × Y \ Wi )

⋂
A−1

i (ui )
⋂

T −1
i (vi )].

Since (FC(Pi ))
−1(ui ) is compactly open in X ×Y for each ui ∈ Xi , by the condition (ii),

G−1
i (ui , vi ) is also compactly open in X ×Y . By (v), for each Hi = Ni × Mi ∈< Xi ×Yi >

there exists compact FC-subspace L Hi = L Ni × L Mi of Xi × Yi containing Hi . By (vi),
for each (x, y) ∈ X × Y \ K × H , there exists i ∈ I such that Gi (x, y)

⋂
L Hi �= ∅. All

conditions of Lemma 2.4 are satisfied. By Lemma 2.4, there exists (x̂, ŷ) ∈ K × H such that
Gi (x̂, ŷ) = ∅ for each i ∈ I . If (x̂, ŷ) �∈ W j for some j ∈ I , then either A j (x̂, ŷ) = ∅ or
Tj (x̂, ŷ) = ∅ which contradicts the condition (i). Therefore (x̂, ŷ) ∈ Wi for each i ∈ I . This
shows that for each i ∈ I, x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and Ai (x̂, ŷ)

⋂
FC(Pi (x̂, ŷ)) = ∅

and hence Ai (x̂, ŷ)
⋂

Pi (x̂, ŷ) = ∅. Therefore, for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) �⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ),

i.e., (x̂, ŷ) is a solution of the SGVQEP(I).

Remark 3.3 Theorem 3.1 generalizes Theorem 3.1 of Peng et al. [5] in the following ways: (1)
the mathematical model in Theorem 3.1 is more general than that in [5]; (2) from nonempty
convex subsets of topological vector spaces to FC-spaces without convexity structure; (3) for
each i ∈ I, Zi may be any nonempty set and Ci (x)may not have cone structure; (4) for each
i ∈ I and (ui , vi ) ∈ Xi × Yi , A−1

i (ui ), T −1
i (vi ) may be compactly open in X × Y and the

set Wi may be compactly closed in X × Y . Theorem 3.1 also generalizes Theorems 4.1 and
4.2 of Ding [6], Theorem 4.1 of Ding and Yao [8] in several aspects.

Remark 3.4 The condition (iii) of Theorem 3.1 can be replaced by the following conditions:
(iii)1 for each (x, y) ∈ X × Y , the set Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi ) ⊂ Ci (x)} is a
FC-subspace of Xi ,
(iii)2 for all (x, y) ∈ X × Y, ψi (x, y, xi ) �⊂ Ci (x).

In fact, if the condition (iii) of Theorem 3.1 does not hold, then there exist i ∈ I, Ni =
{zi,0, · · · , zi,n} ∈< Xi > and x̄ ∈ X with x̄i ∈ FC(Ni ) such that for all j = 0, · · · n, ψi

(x̄, y, zi, j ) ⊂ Ci (x̄). It follows that Ni ⊂ Pi (x̄, y). Since Pi (x̄, y) is a FC-subspace by
(iii)1, we have x̄i ∈ FC(Ni ) ⊂ Pi (x̄, y) and hence ψi (x̄, y, x̄i ) ⊂ Ci (x̄) which contradicts
the condition (iii)2. Therefore the condition (iii) of Theorem 3.1 must be hold.
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Remark 3.5 If for each i ∈ I, Zi is a topological space. The condition that for each zi ∈ Xi ,
the set {(x, y) ∈ X × Y : ψi (x, y, zi ) ⊂ Ci (x)} is compactly open in X × Y in the condition
(ii) of Theorem 3.1 can be replaced by the following conditions:
(ii)1 Ci : X → 2Zi has open graph in X × Zi ,
(ii)2 for each zi ∈ Xi , the mapping (x, y) 
→ ψi (x, y, zi ) is upper semicontinuous on each
compact subsets of X × Y with compact values.

In fact, from the conditions (ii)1, (ii)2 and Lemma 3.3 it follows that for each zi ∈ Xi , the
set {(x, y) ∈ X × Y : ψi (x, y, zi ) �⊂ Ci (x)} is compactly closed in X × Y . Hence the set
{(x, y) ∈ X × Y : ψi (x, y, zi ) ⊂ Ci (x)} is compactly open in X × Y .

By using similar argument as in the proof of Theorem 3.1, we can prove the following
result.

Theorem 3.2 Suppose that K and H are nonempty compact subsets of X and Y , respectively,
such that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) and the set {(x, y) ∈ X × Y :
ψi (x, y, ui ) �⊂ Ci (x)} are all compactly open in X × Y ,

(iii) for each y ∈ Y, ψi is Ci (x)-FC-diagonally quasiconvex of type (II) in third argument,
(iv) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in

X × Y ,
(v) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for

each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,
(vi) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)

⋂
L Ni and

ȳi ∈ Ti (x, y)
⋂

L Mi such that ψi (x, y, z̄i ) �⊂ Ci (x).

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) ⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ)

i.e., (x̂, ŷ) is a solution of the SGVQEP(II).

Remark 3.6 Theorem 3.2 generalizes Theorem 4.3 of Ding [6] to more general mathematical
model. Theorem 3.2 also generalizes Theorem 3.3 of Peng et al. [5] from convex subsets
of topological vector spaces to FC-spaces without convexity structure under much weak
assumptions.

Theorem 3.3 Suppose that K and H are nonempty compact subsets of X and Y , respectively,
such that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) and the set {(x, y) ∈ X × Y :
ψi (x, y, ui )

⋂
Ci (x) �= ∅} are all compactly open in X × Y ,

(iii) for each y ∈ Y, ψi is Ci (x)-FC-diagonally quasiconvex of type (III) in third argument,
(iv) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in

X × Y ,
(v) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for

each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,
(vi) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)

⋂
L Ni and

ȳi ∈ Ti (x, y)
⋂

L Mi such that ψi (x, y, z̄i )
⋂

Ci (x) �= ∅.
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Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi )
⋂

Ci (x̂) = ∅, ∀ zi ∈ Ai (x̂, ŷ)

i.e., (x̂, ŷ) is a solution of the SGVQEP(III).

Proof For each i ∈ I , define a set-valued mapping Pi : X × Y → 2Xi by

Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi )
⋂

Ci (x) �= ∅}, ∀ (x, y) ∈ X × Y.

We show that for each i ∈ I and (x, y) ∈ X × Y ,

xi = πi (x) /∈ FC(P(x, y)). (3.2)

If it is false, then there exist i ∈ I and (x̄, ȳ) ∈ X × Y such that xi = πi (x̄) ∈ FC(P(x̄, ȳ)).
By Lemma 2.1, there exists Ni = {zi,0, · · · , zi,n} ∈< Pi (x̄, ȳ) > such that x̄i ∈ FC(Ni ).
Hence we have

ψi (x̄, ȳ, zi, j )
⋂

Ci (x̄) �= ∅, ∀ j = 0, · · · , n.

But, by (iii) and Lemma 3.1, there exists j ∈ {0, · · · , n} such thatψi (x̄, ȳ, zi, j )
⋂

Ci (x̄) = ∅
which is a contradiction. Hence (3.2) is true. By the condition (ii), for each i ∈ I and zi ∈ Xi ,

P−1
i (zi ) = {(x, y) ∈ X × Y : ψi (x, y, zi )

⋂
Ci (x) �= ∅}

is compactly open in X × Y . It follows from Lemma 2.2 that (FC(Pi ))
−1(zi ) is also com-

pactly open in X ×Y for each zi ∈ Xi . By Lemma 2.3, for each i ∈ I, Xi ×Yi is a FC-space
and X × Y is also a FC-space. The rest of the proof is similar to that of Theorem 3.1. We
omit.

Remark 3.7 Theorem 3.3 generalizes Theorem 3.2 of Peng et al. [5] in the following ways:
(1) from nonempty convex subsets of topological vector spaces to FC-spaces without any
convexity structure; (2) for each i ∈ I, Zi may be any nonempty set and Ci (x) may not
have cone structure; (3) for each i ∈ I and (ui , vi ) ∈∈ Xi × Yi , A−1

i (ui ), T −1
i (vi ) may be

compactly in X × Y and the set Wi may be compactly closed in X × Y .

Theorem 3.4 Suppose that K and H are nonempty compact subsets of X and Y , respectively,
such that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x) and Ti (x) are both nonempty FC-subspaces of Xi

and Yi , respectively,
(ii) for each (ui , vi ) ∈ Xi × Yi , A−1

i (ui ), T −1
i (vi ) and the set {(x, y) ∈ X × Y :

ψi (x, y, ui )
⋂

Ci (x) = ∅} are all compactly open in X × Y ,
(iii) for each y ∈ Y, ψi is Ci (x)-FC-diagonally quasiconvex of type (IV) in third argument,
(iv) the set Wi = {(x, y) ∈ X ×Y : xi ∈ Ai (x), yi ∈ Ti (x)} is compactly closed in X ×Y ,
(v) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for

each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,
(vi) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x)

⋂
L Ni and ȳi ∈

Ti (x)
⋂

L Mi such that ψi (x, y, z̄i )
⋂

Ci (x) = ∅.
Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂), ŷi ∈ Ti (x̂) and ψi (x̂, ŷ, zi )
⋂

Ci (x̂) �= ∅, ∀ zi ∈ Ai (x̂)

i.e., (x̂, ŷ) is a solution of the SGVQEP(IV).
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Proof For each i ∈ I , define a set-valued mapping Pi : X × Y → 2Xi by

Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi )
⋂

Ci (x) = ∅}, quad∀ (x, y) ∈ X × Y.

By using similar argument as in the proof of Theorem 3.3, we can easily prove that the
conclusion of Theorem 3.4 holds.

Remark 3.8 Theorem 3.4 generalizes Theorem 3.4 of Peng et al. [6] in the following ways: (1)
the mathematical model in Theorem 3.1 is more general than that in [5]; (2) from nonempty
convex subsets of topological vector spaces to FC-spaces without convexity structure; (3) for
each i ∈ I, Zi may be any nonempty set and Ci (x)may not have cone structure; (4) for each
i ∈ I and (ui , vi ) ∈ Xi × Yi , A−1

i (ui ), T −1
i (vi ) may be compactly open in X × Y and the

set Wi may be compactly closed in X × Y .
In the following, we assume that for each i ∈ I, Zi is a topological vector space and

Ci : X → 2Zi be such that for each x ∈ X,Ci (x) is a closed convex cone with nonempty
interior.

Definition 3.2 For each i ∈ I, (x, y) ∈ X × Y, ψi : X × Y × Xi → 2Zi is said to be

(i) Ci (x)-FC-quasiconvex in third argument if for each (x, y) ∈ X × Y, Ni = {zi,0, · · · ,
zi,n} ∈ < Xi >, {zi,i0 , · · · zi,ik } ⊂ Ni , and zi ∈ ϕNi (�k), there exists j ∈ {0, · · · , n}
such that

ψi (x, y, zi,i j ) ⊂ ψi (x, y, zi )+ Ci (x),

(ii) Ci (x)-FC-quasiconvex-like in third argument if for each (x, y) ∈ X × Y, Ni =
{zi,0, · · · , zi,n} ∈ < Xi >, {zi,i0 , · · · , zi,ik } ⊂ Ni and zi ∈ ϕNi (�k), there exists
j ∈ {0, · · · , k} such that

ψi (x, y, zi ) ⊂ ψi (x, y, zi,i j )− Ci (x)

Remark 3.9 Definition 3.2 generalizes the corresponding notions of Lin [9] from convex
subsets of topological vector spaces to FC-spaces.

Lemma 3.4 If for each i ∈ I, (x, y) ∈ X × Y, ψi : X × Y × Xi → 2Zi is Ci (x)-FC-quasi-
convex in third argument, then the sets

{zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)} and

{zi ∈ Xi : ψi (x, yi , zi )
⋂
(−intCi (x)) �= ∅}

are both FC-subspaces of Xi .

Proof If the set {zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)} is not a FC-subspace of Xi , then there exist
Ni = {zi,0, · · · , zi,n} ∈< Xi >, {zi,i0 , · · · , zi,ik } ⊂ Ni

⋂{zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)}
and z∗

i ∈ ϕNi (�k) such that ψi (x, y, z∗
i ) ⊂ Ci (x). Since ψi : X × Y × Xi → 2Zi is

Ci (x)-FC-quasiconvex in third argument, there exists j ∈ {0, · · · , k} such that

ψi (x, y, zi,i j ) ⊂ ψi (x, y, z∗
i )+ Ci (x) ⊂ Ci (x)+ Ci (x) = Ci (x).

Since zi,i j ∈ {zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)}, we have ψi (x, y, zi,i j ) �⊂ Ci (x) which is a
contradiction. Hence the set {zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)} is a FC-subspace of Xi .
If the set {zi ∈ Xi : ψi (x, y, zi )

⋂
(−intCi (x)) �= ∅} is not FC-subspace of Xi , then there
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exist Ni = {zi,0, · · · , zi,n} ∈< Xi >, {zi,i0 , · · · , zi,ik } ⊂ Ni
⋂{zi ∈ Xi : ψi (x, y, zi )

⋂

(−intCi (x)) �= ∅} and z∗
i ∈ ϕNi (�k) such that

ψi (x, y, z∗
i )

⋂
(−intC(x)) = ∅. (3.3)

Since ψi : X × Y × Xi → 2Zi is Ci (x)-FC-quasiconvex in third argument, there exists
j ∈ {0, · · · , k} such that

ψi (x, y, zi,i j ) ⊂ ψi (x, y, z∗
i )+ Ci (x). (3.4)

Since zi,i j ∈ {zi ∈ Xi : ψi (x, y, zi )
⋂
(−intCi (x)) �= ∅}, then we have

ψi (x, y, zi,i j )
⋂
(−intCi (x)) �= ∅. (3.5)

Let v∗
i ∈ ψi (x, y, zi,i j )

⋂
(−intCi (x)). By (3.4), there exists u∗

i ∈ ψi (x, y, z∗
i ) such that

v∗
i ∈ u∗

i + Ci (x). Hence we have that

u∗
i ∈ v∗

i − Ci (x) ⊂ −intCi (x)− Ci (x) ⊂ −intCi (x).

It follow that

ψi (x, y, z∗
i )

⋂
(−intCi (x)) �= ∅

which contradicts (3.3). Therefore the set {zi ∈ Xi : ψi (x, y, zi )
⋂
(−intCi (x)) �= ∅} is

FC-subspace of Xi .

Lemma 3.5 If for each i ∈ I, (x, y) ∈ X × Y, ψi : X × Y × Xi → 2Zi is Ci (x)-FC-quasi-
convex-like in third argument, then the sets

{zi ∈ Xi : ψi (x, y, zi ) ⊂ −intCi (x)} and

{zi ∈ Xi : ψi (x, y, zi )
⋂

Ci (x) = ∅}
are both FC-subspaces of Xi .

Proof If the set {zi ∈ Xi : ψi (x, y, zi ) ⊂ −intCi (x)} is not FC-subspace of Xi , then there
exist Ni = {zi,0, · · · , zi,n} ∈< Xi >, {zi,i0 , · · · , zi,ik } ⊂ Ni

⋂{zi ∈ Xi : ψi (x, y, zi ) ⊂
−intCi (x)}, z∗

i ∈ ϕNi (�k) such thatψi (x, y, z∗
i ) �⊂ −intCi (x). Sinceψi is Ci (x)-FC-quasi-

convex-like in third argument, there exists j ∈ {0, · · · , k} such that

ψi (x, y, z∗
i ) ⊂ ψi (x, y, zi,i j )− Ci (x).

Since zi,i j ∈ {zi ∈ Xi : ψi (x, y, zi ) ⊂ −intCi (x)}, we have

ψi (x, yi , zi,i j ) ⊂ −intCi (x).

It follows that ψi (x, y, z∗
i ) ⊂ ψi (x, y, zi,i j ) − Ci (x) ⊂ −intCi (x) − Ci (x) ⊂ −intCi (x),

which is a contradiction. Therefore the set {zi ∈ Xi : ψi (x, y, zi ) ⊂ −intCi (x)} is a
FC-subspace of Xi . If the set {zi ∈ Xi : ψi (x, y, zi )

⋂
Ci (x) = ∅} is not FC-subspace

of Xi , then there exist Ni = {zi,0, · · · , zi,n} ∈< Xi >, {zi,i0 , · · · , zi,ik } ⊂ Ni
⋂{zi ∈

Xi : ψi (x, y, zi )
⋂

Ci (x) = ∅}, z∗
i ∈ ϕNi (�k) such that ψi (x, y, z∗

i )
⋂

Ci (x) �= ∅. Let
u∗

i ∈ ψi (x, y, z∗
i )

⋂
Ci (x). Since ψi is Ci (x)-FC-quasiconvex-like in third argument, there

exists j ∈ {0, · · · , k} such that

ψi (x, y, z∗
i ) ⊂ ψi (x, y, zi,i j )− Ci (x).
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Hence there exists v∗
i ∈ ψi (x, y, zi,i j ) such that u∗

i ∈ v∗
i − Ci (x) and so v∗

i ∈ u∗
i + Ci (x) ⊂

Ci (x)+ Ci (x) = Ci (x). It follows that ψi (x, y, zi,i j )
⋂

Ci (x) �= ∅. Since zi,i j ∈ {zi ∈ Xi :
ψi (x, yi , zi )

⋂
Ci (x) = ∅}, we have ψi (x, y, zi,i j )

⋂
Ci (x) = ∅ which is a contradiction.

Therefore the set {zi ∈ Xi : ψi (x, y, zi )
⋂

Ci (x) = ∅} is a FC-subspace of Xi ,

Theorem 3.5 Let K and H be nonempty compact subsets of X and Y , respectively, and for
each i ∈ I,Ci (x) is closed convex cone with nonempty interior. Suppose that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) are compactly open in X × Y ,
(iii) the mapping x 
→ intCi (x) has open graph and for each zi ∈ Xi , the mapping

(x, y) 
→ ψi (x, y, zi ) is upper semicontinuous on each compact subsets of X × Y
with nonempty compact values,

(iv) for each y ∈ Y, ψi is Ci (x)-FC-quasiconvex-like in third argument and for each
(x, y) ∈ X × Y, ψ(x, y, xi ) �⊂ −intCi (x),

(v) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in
X × Y ,

(vi) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for
each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,

(vii) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)
⋂

L Ni and
ȳi ∈ Ti (x, y)

⋂
L Mi such that ψi (x, y, z̄i ) ⊂ −intCi (x).

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) �⊂ −intCi (x̂), ∀ zi ∈ Ai (x̂, ŷ).

Proof For each i ∈ I , define a set-valued mapping Pi : X × Y → 2Xi by

Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi ) ⊂ −intCi (x)}, ∀ (x, y) ∈ X × Y.

By the condition (iii) and Lemma 3.3, for each zi ∈ Zi , the set P−1
i (zi ) = {(x, y) ∈

X × Y : ψi (x, y, zi ) ⊂ −intCi (x)} is compact open in X × Y . It follows from (iv) and
Lemma 3.5 that for each i ∈ I and (x, y) ∈ X × Y, Pi (x, y) is a FC-subspaces of Xi and
xi = πi (x) /∈ Pi (x, y). For each i ∈ I , define a set-valued mapping Gi : X × Y → 2Xi ×Yi

by

Gi (x, y) =
{ [Ai (x, y)

⋂
Pi (x, y)] × Ti (x, y), if (x, y) ∈ Wi ,

Ai (x, y)× Ti (x, y), if (x, y) /∈ Wi ,

By (i), for each i ∈ I and (x, y) ∈ X × Y,Gi (x, y) is a FC-subspace of Xi × Yi . Since
for each i ∈ I and (x, y) ∈ X × Y, xi /∈ Pi (x, y), by the definition of Wi , we have that for
each i ∈ I and (x, y) ∈ X × Y, (xi , yi ) /∈ Gi (x, y). By using a similar argument as in the
proof of Theorem 3.1, we can show that for each i ∈ I and (ui , vi ) ∈ Xi × Yi ,G−1

i (ui , vi )

is compactly open in X × Y . By (vi), for each Hi = Ni × Mi ∈< Xi × Yi > there exists
compact FC-subspace L Hi = L Ni × L Mi of Xi × Yi i containing Hi . By (vii), for each
(x, y) ∈ X × Y \ K × H , there exists i ∈ I such that Gi (x, y)

⋂
L Hi �= ∅. All conditions

of Lemma 2.4 are satisfied. The rest of the proof is similar to that of Theorem 3.1. We omit.

Theorem 3.6 Let K and H be nonempty compact subsets of X and Y , respectively, and for
each i ∈ I, Ci (x) is closed convex cone with nonempty interior. Suppose that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,
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(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) are compactly open in X × Y ,
(iii) the mapping x 
→ Ci (x) is upper semicontinuous on X and for each zi ∈ Zi , the

mapping (x, y) 
→ ψi (x, y, zi ) is lower semicontinuous on each compact subset of
X × Y ,

(iv) for each y ∈ Y, ψi is Ci (x)-FC-quasiconvex in third argument and for each (x, y) ∈
X × Y, ψ(x, y, xi ) ⊂ Ci (x),

(v) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in
X × Y ,

(vi) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for
each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,

(vii) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)
⋂

L Ni and
ȳi ∈ Ti (x, y)

⋂
L Mi such that ψi (x, y, z̄i ) �⊂ Ci (x).

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi ) ⊂ Ci (x̂), ∀ zi ∈ Ai (x̂, ŷ)

i.e., (x̂, ŷ) is a solution of the SGVQEP(II).

Proof For each i ∈ I , define a set-valued mapping Pi : X × Y → 2Xi by

Pi (x, y) = {zi ∈ Xi : ψi (x, y, zi ) �⊂ Ci (x)}, ∀ (x, y) ∈ X × Y.

By the condition (iii) and Lemma 3.2, for each zi ∈ Zi . P−1(zi ) = {(x, y) ∈ X × Y :
ψi (x, y, zi ) �⊂ Ci (x)} is compact open in X × Y . It follows from (iv) and Lemma 3.4 that
for each i ∈ I and (x, y) ∈ X × Y, Pi (x, y) is a FC-subspaces of Xi and xi /∈ Pi (x, y).
The rest of the proof is similar to that of Theorem 3.5. we omit it.

By applying Lemmas 2,4, 3.2–3.4 and the similar argument as in the proof of Theorems 3.5
and 3.6, we can easily prove the following results.

Theorem 3.7 Let K and H be nonempty compact subsets of X and Y , respectively, and for
each i ∈ I,Ci (x) is closed convex cone with nonempty interior. Suppose that for each i ∈ I ,

(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) are compactly open in X × Y ,
(iii) the mapping x 
→ intCi (x) has open graph and for each zi ∈ Xi , the mapping

(x, y) 
→ ψi (x, y, zi ) is lower semicontinuous on each compact subsets of X × Y ,
(iv) for each y ∈ Y, ψi is Ci (x)-FC-quasiconvex in third argument and for each (x, y) ∈

X × Y, ψ(x, y, xi )
⋂
(−intCi (x)) = ∅,

(v) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in
X × Y ,

(vi) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for
each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,

(vii) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)
⋂

L Ni and
ȳi ∈ Ti (x, y)

⋂
L Mi such that ψi (x, y, z̄i )

⋂
(−intCi (x)) �= ∅.

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi )
⋂
(−intCi (x̂)) = ∅, ∀ zi ∈ Ai (x̂, ŷ).

Theorem 3.8 Let K and H be nonempty compact subsets of X and Y , respectively, and for
each i ∈ I, Ci (x) is closed convex cone with nonempty interior. Suppose that for each i ∈ I ,
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(i) for each (x, y) ∈ X × Y, Ai (x, y) and Ti (x, y) are both nonempty FC-subspaces of
Xi and Yi , respectively,

(ii) for each (ui , vi ) ∈ Xi × Yi , A−1
i (ui ), T −1

i (vi ) are compactly open in X × Y ,
(iii) the mapping x 
→ Ci (x) is upper semicontinuous on X and for each zi ∈ Zi , the

mapping (x, y) 
→ ψi (x, y, zi ) is upper semicontinuous on each compact subset of
X × Y with nonempty compact values,

(iv) for each y ∈ Y, ψi is Ci (x)-FC-quasiconvex-like in third argument and for each
(x, y) ∈ X × Y, ψ(x, y, xi )

⋂
Ci (x) �= ∅,

(v) the set Wi = {(x, y) ∈ X × Y : xi ∈ Ai (x, y), yi ∈ Ti (x, y)} is compactly closed in
X × Y ,

(vi) for each Ni ∈< Xi >, there exists compact FC-subspace L Ni containing Ni and for
each Mi ∈< Yi >, there exists compact FC-subspace L Mi of Yi containing Mi ,

(vii) for each (x, y) ∈ X × Y \ K × H, there exist i ∈ I, z̄i ∈ Ai (x, y)
⋂

L Ni and
ȳi ∈ Ti (x, y)

⋂
L Mi such that ψi (x, y, z̄i )

⋂
Ci (x) = ∅.

Then there exists (x̂, ŷ) ∈ K × H such that for each i ∈ I ,

x̂i ∈ Ai (x̂, ŷ), ŷi ∈ Ti (x̂, ŷ) and ψi (x̂, ŷ, zi )
⋂

Ci (x̂) �= ∅, ∀ zi ∈ Ai (x̂, ŷ)

i.e., (x̂, ŷ) is a solution of the SGVQEP(IV).

Remark 3.10 Theorems 3.5–3.8 also generalize the corresponding results of Peng et al. [5]
from convex subsets of topological spaces to FC-spaces under much weak assumptions.
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